как клетки распознают уровень кислорода и адаптируются к нему

Нобелевская премия по физиологии и медицине 2019 года присуждена трем ученым – американцам Уильяму Кэлину и Греггу Семензе и британцу Питеру Рэтклиффу “за открытие того, как клетки распознают уровень кислорода и адаптируются к нему”.

Члены Нобелевского комитета подчеркнули фундаментальную важность открытия: способность усваивать кислород критически важна для всех животных организмов на Земле, включая человека. Мы можем долго прожить без еды, достаточно долго – без воды, но мы не можем не дышать. Это связано с тем, что кислород, который мы вдыхаем, постоянно вовлечен в фундаментальные процессы извлечения энергии, которая необходима для жизни нашего организма. Сегодняшние лауреаты обнаружили генетический механизм, который позволяет организму регулировать уровни кислорода в разных частях тела и управлять ими.

«Эта система, которая требуется, чтобы наше тело нормально работало. Уровни кислорода отличаются в разных частях тела, например, в мышцах во время физических упражнений его уровни очень низкие – нам знакомо выражение «анаэробные тренировки». И нашему телу нужна система, чтобы выравнивать и регулировать уровень кислорода. Лауреаты обнаружили ее — эта система также отвечает за регулирование красных кровяных телец, которые могут переносить кислород. Она позволила нам, так сказать, колонизировать нашу планету во всем ее разнообразии – например, уровни кислорода в горах, на высоте, куда ниже, чем привычные нам и все равно люди смогли приспособиться к ним, такова адаптивная сила организма», — подчеркнул другой член Нобелевского комитета, профессор Патрик Эрнфорш, специалист по нейронаукам.

“Это может прозвучать банально, но открытие сегодняшних лауреатов – то, что войдет в учебники биологии. Дети в возрасте 12-13 лет будут изучать это, потому что это очень, очень базовый аспект работы клеток“, — сказал член Нобелевского комитета профессор Рэндон Джонсон.

Зачем вообще нужен кислород

Наверное, каждому очевидно, что кислород (O2) очень нужен. Перекрытие его поступления в организм – при инфаркте, утоплении, повешении, сильном задымлении — приводит к быстрой смерти. Без кислорода невозможна жизнь не только такого сложного организма, как человеческий, но и куда более простых организмов и клеток. Кислород внутри клеток на самом базовом уровне участвует в процессах извлечения энергии из питательных веществ. Будь то углеводы или жиры, кислород нужен, чтобы окислить их – в этом процессе выделяется энергия, необходимая для всех без исключения процессов в нашем организме – биосинтеза белков, из которых состоит все внутри нас, их транспорта и всех более сложных функций, включая иммунитет и само дыхание. 

Этот процесс протекает в специальных «органах» клетки – митохондриях. В 1931 году Отто Варбург получил Нобелевскую премию по физиологии и медицине за объяснение процесса генерирования энергии – для этого необходим сложный набор ферментов.

Еще одна важная мысль – наш организм никак не может производить кислород сам. Растения – могут, они выделяют его в ходе фотосинтеза (кстати, для жизнедеятельности растения расходуют кислород, они тоже дышат – но выделяют они его больше), а человек и животные – нет. Поэтому нам критически важно «уметь» стабильно получать его из окружающей среды, а получив – «грамотно» распределять внутри организма. Это не такая простая задача. 

В разных условиях в окружающей среде содержится разное количество кислорода, поэтому при его недостатке телу нужно, во-первых, перераспределять его так, чтоб он шел на самое необходимое, а во-вторых, — сигнализировать нам о том, что кислорода мало и его нужно искать. То же касается уровней кислорода в разных частях тела и органах – иногда его сильнее расходует мозг, иногда – мышцы. Тогда нужно лучше снабжать их, выравнивать уровень. 

Фото: nobelprize.org

В 1938 году Нобелевскую премию получил Корней Хейманс – он обнаружил так называемся каротидные тельца. Это специальные рецепторы («датчики») в сонной артерии, которые «измеряют» уровень кислорода и сообщают мозгу, если с ними что-то не так. Это механизм адаптации/реакции на недостаток кислорода – гипоксию.

Что сделали нобелиаты

Здесь важно понять, как же реагирует на гипоксию организм. Кислорода мало, значит, его нужно лучше переносить и извлекать, а для этого нам нужно больше красных кровяных тех – эритроцитов (тех самых, что содержат гемоглобин, который измеряют врачи – низкий гемоглобин означает проблемы со снабжением органов кислородом). Чтобы эритроцитов стало больше, при гипоксии организм выделяет гормон эритропоэтин, который и запускает их синтез. Слово эритропоэтин тоже знакомо – в связи с допинговыми скандалами. Больше кислорода в мышцах – больше спортивные успехи, поэтому спортсменами становятся те, у кого изначально хороший гемоглобин и много эритропоэтина. 

А потом хочется еще сильнее повысить его уровень, и для этого используются как легальные, так и, к сожалению, нелегальные способы. Однако, запомним, что в обычной жизни эритропоэтин – не допинг или яд, а гормон, которому мы обязаны жизнью, а наши клетки – возможностью дышать, получать нужное количество кислорода. Еще с начала XX века был известен механизм гормонального контроля производства красных кровяных телец, но ученые не могли разобраться, как его запускает дефицит кислорода?

И здесь на помощь приходит генетика. Грегг Семенза и Питер Рэтклифф независимо обнаружили, что в ДНК есть особые участки рядом с теми, что кодируют сам эритропоэтин. Они-то и являются чувствительными к кислороду и «толкают» в нужный момент «соседа» по ДНК, который запускает синтез эритропоэтина.

Теперь предстояло понять, кто «приносит» к ДНК информацию о недостатке кислорода. Семенза обнаружил соответствующий белковый комплекс, он получил название HIF (hypoxia inducible factor, индуцируемый гипоксией фактор – здесь фактор означает группу белков). Два разных белка в случае гипоксии связывались с ДНК и запускали молекулярный механизм, описанный выше. 

Уильям Кэлин, занимаясь исследованием определенных типов рака, нашел еще один ген – VHL, который в нужный момент останавливает работу HIF, чтобы организм не произвел слишком много эритропоэтина и красных кровяных телец. Это механизм можно сравнить с весами – если кислорода слишком мало, HIF включается, чтоб выровнять равновесие, а VHL контролирует его работу, чтоб не допустить «перевеса» в другую сторону.

У здорового человека этот механизм критичен для метаболизма вообще – процесса выработки энергии из пищи, для компенсации при физических нагрузках, адаптации к горам, развитию эмбриона и контролю иммунитета. Он также важен при болезнях – анемии, инсультах, инфарктах, инфекциях и ранах, — везде, где необходимо локальное усиленное снабжение кислородом. Есть исследования, которые на основании этого механизма пытаются бороться с раковыми опухолями – если опухоль “посадить” на кислородный голод, она не сможет развиваться и расти.

“Рак питается и растет достаточно активно, в том числе опухоль выращивает дополнительные кровеносные сосуды, чтобы снабжать себя необходимым количеством кислорода. Исследования показывают, что эти белки гиперэкспрессированы в солидных опухолях (то есть их там больше чем необходимо). Предполагается, что регуляция уровня снабжения кислородом через работу с HIF позволит замедлить рост опухоли. Кроме этого, некоторые исследователи предполагают, что отслеживание уровня насыщения кислородом тканей может стать одним из способов обнаруживать рак, прогнозировать реакцию опухоли на лечение и ее развитие в целом”, говорит Любовь Барабанова, медицинский директор Севергрупп Медицина (сеть клиник «Скандинавия»).

Фото: nobelprize.org

О ком речь

Кэлин и Семенза родились в Нью-Йорке. Кэлин работает в медицинском институте Ховарда Хьюджеса, Семенза – в Университете Джонса Хопкинса. Сэр Питер Рэтклифф родился в Ланкашире и сейчас работает в Оксфорде.

Во время пресс-конференции, посвященной оглашению премии, секретарь Нобелевского комитета по физиологии и медицине Томас Перлманн рассказал, что ему удалось пообщаться со всеми тремя лауреатами. 

«Профессор Рэтклифф уже был в офисе, а Грегг Семенза и Билл Кэлин живут в США, они еще спали, и мне пришлось их разбудить. Последний, кому я дозвонился, был Билл. У нас не было его телефона, поэтому мне сначала удалось поговорить с его сестрой. Она дала мне два номера телефона, я позвонил по первому из них и спросил, говорю ли я с Биллом Кэлином, и получил отрицательный ответ. Второй номер оказался правильным. Билл Кейлин был очень счастлив, не находил слов. Все трое были очень рады и подчеркнули, что для них большая честь разделить этот приз друг с другом, именно в этом коллективе», — рассказал Перлманн.

Иногда на пресс-конференции организуют телефонные интервью с лауреатами, однако в этот раз никого из них на связи не было, на вопросы отвечал только Нобелевский комитет.

Размера премии в этом году составляет девять миллионов крон, и они будут разделены поровну между всеми тремя лауреатами.

Читайте на Правмире: https://www.pravmir.ru/nobelevka-za-upravlenie-kislorodom-kak-organizm-spasaetsya-ot-gipoksii-i-pri-chem-tut-dopingovye-skandaly/

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *